Learning Indonesian-Chinese Lexicon with Bilingual Word Embedding Models and Monolingual Signals
نویسندگان
چکیده
We present a research on learning Indonesian-Chinese bilingual lexicon using monolingual word embedding and bilingual seed lexicons to build shared bilingual word embedding space. We take the first attempt to examine the impact of different monolingual signals for the choice of seed lexicons on the model performance. We found that although monolingual signals alone do not seem to outperform signals coverings all words, the significant improvement for learning word translation of the same signal types may suggest that linguistic features possess value for further study in distinguishing the semantic margins of the shared word embedding space.
منابع مشابه
On the Role of Seed Lexicons in Learning Bilingual Word Embeddings
A shared bilingual word embedding space (SBWES) is an indispensable resource in a variety of cross-language NLP and IR tasks. A common approach to the SBWES induction is to learn a mapping function between monolingual semantic spaces, where the mapping critically relies on a seed word lexicon used in the learning process. In this work, we analyze the importance and properties of seed lexicons f...
متن کاملTowards producing bilingual lexica from monolingual corpora
Bilingual lexica are the basis for many cross-lingual natural language processing tasks. Recent works have shown success in learning bilingual dictionary by taking advantages of comparable corpora and a diverse set of signals derived from monolingual corpora. In the present work, we describe an approach to automatically learn bilingual lexica by training a supervised classifier using word embed...
متن کاملOn multiword lexical units and their role in maritime dictionaries
Multi-word lexical units are a typical feature of specialized dictionaries, in particular monolingual and bilingual maritime dictionaries. The paper studies the concept of the multi-word lexical unit and considers the similarities and differences of their selection and presentation in monolingual and bilingual maritime dictionaries. The work analyses such issues as the classification of multi-w...
متن کاملLearning Crosslingual Word Embeddings without Bilingual Corpora
Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training alg...
متن کاملLearning Translations via Matrix Completion
Bilingual Lexicon Induction is the task of learning word translations without bilingual parallel corpora. We model this task as a matrix completion problem, and present an effective and extendable framework for completing the matrix. This method harnesses diverse bilingual and monolingual signals, each of which may be incomplete or noisy. Our model achieves state-of-the-art performance for both...
متن کامل